
An Introduction to MueLu 

 

Trilinos User Group Meeting 

November 4-8, 2013 

 

Andrey Prokopenko 

Jonathan Hu, Chris Siefert, Ray Tuminaro 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a 

wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear 

Security Administration under contract DE-AC04-94AL85000. 

2013-9485C 



Outline 

• Motivation and current capabilities 

• Design overview 

• User interfaces and examples 

• Conclusions 



Motivation and current capabilities 



Motivation for a New Multigrid Library 

• Trilinos already has mature multigrid library, ML 

– Algorithms for Poisson, Elasticity, H(curl), H(div) 

– Algorithms have been exercised extensively. 

– Broad user base 

• However … 

– ML weakly linked to other Trilinos capabilities (e.g., 

smoothers) 

– C-based, only scalar type “double” supported 

explicitly 

– Over 50K lines of source code 

• Maintainability, extensibility 



Objectives for New Multigrid Framework 

• Templating on scalar, ordinal types 

• Advanced architectures 

– Kokkos support for various compute node types 

(MPI, MPI+threads, MPI+GPU) 

• Extensibility 

– Facilitate development of other algorithms 

• Energy minimization methods 

• Geometric, classic algebraic multigrid, … 

– Ability to combine several types of multigrid 

• Preconditioner reuse 

– Reduce setup expense 



AMG 

• Two main components 

– Smoothers 

• Approximate solves on each level 

• “Cheaply” reduces particular error 

components 

• On coarsest level, smoother = Ai
-1 

(usually) 

– Grid Transfers 

• Moves data between levels 

• Must represent components that 

smoothers can’t reduce 

• Algebraic Multigrid (AMG) 

– AMG generates grid transfers 

– AMG generates coarse grid Ai’s 

Au=f 

A2e2=r2 

A1e1=r1 



Current MueLu Capabilities 

• Transfer operators 

– Smoothed aggregation 

– Nonsmoothed aggregation 

– Petrov Galerkin 

– Energy minimization 

• Smoothers and direct solvers 

– Ifpack/Ifpack2 (Jacobi, Gauss-Seidel, ILU, 

polynomial, …) 

– Amesos/Amesos2 (KLU, Umfpack, Superlu, …) 

– Block smoothers (Braess Sarazin, …) 

 

We support both Epetra and Tpetra! 

 

 



Xpetra 

• Wrapper for Epetra and 
Tpetra 
– Based on Tpetra interfaces 

– Allows unified access to 
either linear algebra library 

 

• Layer concept: 
– Layer 2: blocked operators 

– Layer 1: operator views 

– Layer 0: low level E/Tpetra 
wrappers (automatically 
generated code) 

 

• MueLu algorithms are 
written using Xpetra 

Tpetra Epetra 

 Kokkos 

Xpetra 

 

 

 

 

Layer 2 (advanced logic) 

Layer 1 (basic logic) 

Layer 0 (low level wrapper) 

MueLu 



Design overview 



Design 

• Hierarchy 

– Generates and stores data 

– Provides multigrid cycles 

• Factory 

– Generates data 

• FactoryManager 

– Manages dependencies among factories 

 

Preconditioner is created by linking together factories (constructing 

FactoryManager) and generating Hierarchy data using that manager.  

 

User is not required to specify these dependencies. 
M
u
e
L
u
:
:
H
i
e
r
a
r
c
h
y
 

MueLu::Level 

MueLu::Level 

MueLu::Level 



Factories 

Input 

Output 

Factory 

DeclareInput(…) 

Build(…) 

• Factory processes input data (from 

Level) and generates some output data 

(stored in Level) 

 

• Two types of factories  

– Single level (smoothers, aggregation, ...) 

– Two level (prolongators) 
Output is stored on next coarser level 

 

Factory can generate more multiple 

output variables (e.g. „Ptent“ and 

„Nullspace“) 



Multigrid hierarchy 

• A set of factories defines the 

building process of a coarse 

level 

• Reuse factories to iteratively 

set up multigrid hierarchy 

Level 1 

Level 2 

Level 3 

Factory 

Factory 

Factory Factory 

Factory 

Factory 

FactoryManager 

Input 

Output 

fi
n

e
 l
e

v
e

l 

c
o

a
rs

e
 l
e

v
e

l 

 



Multigrid hierarchy 

• A set of factories defines the 

building process of a coarse 

level 

• Reuse factories to iteratively 

set up multigrid hierarchy 

Level 1 

Level 2 

Level 3 

Factory 

Factory 

Factory Factory 

Factory 

Factory 

FactoryManager 

fi
n

e
 l
e

v
e

l 

c
o

a
rs

e
 le

v
e

l 
 



• Group fine unknowns into 

aggregates to form coarse 

unknowns 
 

 

• Partition given nullspace B(h) 

across aggregates to have local 

support 

 

 

 

 

 

 

 

 

 

 

Smoothed Aggregation Setup 







































































1

1

1

1

1

1

1

1

1






• Group fine unknowns into 

aggregates to form coarse 

unknowns 
 

 

• Partition given nullspace B(h) 

across aggregates to have local 

support 

 

• Calculate QR=B(h) to get initial 

prolongator Ptent (=Q) and coarse 

nullspace (R). 

 

 

 

 

 

 

 

 

 

Smoothed Aggregation Setup 







































































1

1

1

1

1

1

1

1

1




• Form final prolongator Psm = (I – ωD-1A)Ptent 



Linking factories 

TentativePFactory 

AggregationFactory 

CoalesceDropFactory 

SaPFactory 

Graph 

Aggregates 

Ptent 

P 

Nullspace 

A 



Linking factories 



User interfaces 



MueLu – User Interfaces 

• MueLu can be customized as follows: 

– XML input files 

– Parameter lists (key-value pairs) 

– Directly through C++ interfaces 

 

• New/casual users 

– Minimal interface 

– Sensible defaults provided automatically 

 

• Advanced users 

– Can customize or replace any component of 

multigrid algorithm. 



C++: smoothed aggregation 

• Generates smoothed aggregation AMG 

• Uses reasonable defaults. 

• Every component can be easily changed 



C++: unsmoothed aggregation 

• Generates unsmoothed prolongator 



C++: unsmoothed aggregation 

• Generates unsmoothed prolongator 



C++: polynomial smoother 

• Uses degree 3 polynomial smoother 



XML: creating hierarchy 



XML: smoothed aggregation  

• Generates smoothed aggregation AMG 

• Uses reasonable defaults 



XML: unsmoothed aggregation 

• Generates unsmoothed prolongator 



XML: polynomial smoother  

• Uses degree 3 polynomial smoother 



XML: polynomial smoother only for level 2  

• Uses degree 3 polynomial smoother for level 2 

• Uses default smoother (Gauss-Seidel) for all other levels  



Summary 

• Current status 

– Part of publicly available Trilinos anonymous clone 

– We still support ML. 

 

• Ongoing/Future work 

– Preparing for public release 

• Improving documentation 

• Improving application interfaces 

– Improving performance 

– Integrating existing algorithms 

– Developing new algorithms 


